Analyse de trafic réseau réalisée avec Wireshark

Rapport de projet technique

Auditeur : Yacine Sehli

17 novembre 2025

Table des matières

R	Résumé 2					
1	Intr 1.1 1.2		ion xte	3 3		
2	Mét	thodol	ogie	4		
	2.1		utilisés	4		
	2.2	Analy	se générale — Loopback (adapteur for loopback.pcapng)	4		
		2.2.1	Statistiques principales	4		
		2.2.2	Protocoles observés	4		
		2.2.3	Flux et ports remarquables	4		
	2.3	Analy	se générale — Ethernet (wireshark1.pcapng)	5		
		2.3.1	Statistiques principales	5		
		2.3.2	Protocoles observés	5		
		2.3.3	Top Talkers (adresses IP)	5		
		2.3.4	Ports les plus utilisés	5		
	2.4	Analy	se générale — Wi-Fi (wireshark2 wifi.pcapng)	6		
		2.4.1	Statistiques principales	6		
		2.4.2	Protocoles observés	6		
		2.4.3	Observations Wi-Fi	6		
3	Visualisations 7					
	3.1	Répar	tition protocolaire	7		
	3.2	Top T	alkers —	8		
4	Cor	nparai	son entre interfaces	9		
	4.1	Synth	èse	9		
	4.2	Obser	vations de sécurité	9		
5	Cor	clusio	$\mathbf{n}\mathbf{s}$	10		
	5.1	Concl	usions	10		
\mathbf{A}	nnex	es		11		

Résumé

Ce rapport présente une analyse technique et détaillée de trois captures réseau réalisées avec Wireshark : une capture *loopback*, une capture *Ethernet* et une capture *Wi-Fi*. L'objectif est d'identifier les protocoles échangés, les flux majeurs, les ports utilisés, la présence éventuelle d'anomalies et de proposer des recommandations pratiques.

Remarque importante : Les graphiques et tableaux inclus dans ce document utilisent des jeux de données illustratifs. Dans l'annexe, des commandes tshark sont fournies pour extraire les données réelles depuis vos fichiers .pcapng et remplacer les jeux de données fictifs.

Introduction

1.1 Contexte

L'analyse du trafic réseau est essentielle pour : la sécurité, le diagnostic d'incidents, l'optimisation des performances et la validation du comportement d'applications. Les fichiers fournis représentent trois contextes distincts :

- Loopback: trafic localhost (échanges inter-processus). Fichier: adapteur for loopback.pcapng.
- Ethernet: trafic filaire sur interface physique. Fichier: wireshark1.pcapng.
- Wi-Fi: trafic sans fil capturé sur interface Wi-Fi. Fichier: wireshark2 wifi.pcapng.

1.2 Objectifs

- 1. Extraire les statistiques principales (nombre de paquets, durée, protocoles dominants).
- 2. Identifier flux TCP/UDP significatifs (adresses IP et ports).
- 3. Relever anomalies (ex. scans, retransmissions, paquets mal formés).
- 4. Comparer les caractéristiques des trois interfaces.
- 5. Formuler des recommandations.

Méthodologie

2.1 Outils utilisés

- Wireshark pour inspection visuelle et filtrage.
- tshark (ligne de commande) pour extraire des statistiques et générer des CSV.

Analyse par fichier

2.2 Analyse générale — Loopback (adapteur for loopback.pcapng)

2.2.1 Statistiques principales

Table 2.1 – Statistiques synthétiques — Loopback

Mesure	Valeur (ex.)	Commentaire
Nombre total de paquets	1234	capture courte, échanges locaux
Durée de la capture	$12.34 \mathrm{\ s}$	période observée
Débit moyen	100 pkt/s	ordre de grandeur

2.2.2 Protocoles observés

Table 2.2 – Distribution protocolaire — Loopback

Protocole	Paquets	Pourcentage
TCP	820	66.5%
UDP	150	12.2%
DNS	60	4.9%
HTTP	45	3.6%
Autres (ARP, ICMP)	159	12.8%

2.2.3 Flux et ports remarquables

- Connexions TCP locales sur 127.0.0.1 : ports 5000–5020 (trafic applicatif).
- Requêtes DNS locales vers résolveur local (UDP 53).
- Quelques échanges HTTP locaux (tests d'API).

2.3 Analyse générale — Ethernet (wireshark1.pcapng)

2.3.1 Statistiques principales

Table 2.3 – Statistiques synthétiques — Ethernet

Mesure	Valeur (ex.)	Commentaire
Nombre total de paquets Durée de la capture Débit moyen	12 345 300 s 41 pkt/s	capture plus importante 5 minutes

2.3.2 Protocoles observés

Table 2.4 – Distribution protocolaire — Ethernet

Protocole	Paquets	Pourcentage
TCP	6200	50.2%
UDP	3100	25.1%
ARP	1234	10.0%
DNS	567	4.6%
HTTP/HTTPS	876	7.1%

2.3.3 Top Talkers (adresses IP)

Table 2.5 – Top 5 adresses IP — Ethernet

Adresse IP	Nombre de paquets
192.168.1.10	3 200
192.168.1.1	2100
93.184.216.34	1200
172.217.14.78	900
192.168.1.50	700

2.3.4 Ports les plus utilisés

Table 2.6 – Ports (TCP/UDP) — Ethernet

Port	Nombre de flux
80 (HTTP)	420
443 (HTTPS)	1500
53 (DNS)	567
22 (SSH)	120
123 (NTP)	85

2.4 Analyse générale — Wi-Fi (wireshark2 wifi.pcapng)

2.4.1 Statistiques principales

Table 2.7 – Statistiques synthétiques — Wi-Fi

Mesure	Valeur (ex.)	Commentaire
Nombre total de paquets	8765	capture Wi-Fi (trafic mixte)
Durée de la capture	$600 \mathrm{\ s}$	10 minutes
Débit moyen	14.6 pkt/s	incl. management frames

2.4.2 Protocoles observés

Table 2.8 – Distribution protocolaire — Wi-Fi

Protocole	Paquets	Pourcentage
802.11 management	2500	28.5%
TCP	3900	44.5%
UDP	1000	11.4%
ARP	200	2.3%
DNS	165	1.9%

2.4.3 Observations Wi-Fi

- Présence de trames de management (beacon, probe) normal en Wi-Fi.
- Quelques retransmissions identifiées (signal instable ou collisions).
- Flux chiffrés (HTTPS) majoritaires vers IP externes.

Visualisations

3.1 Répartition protocolaire

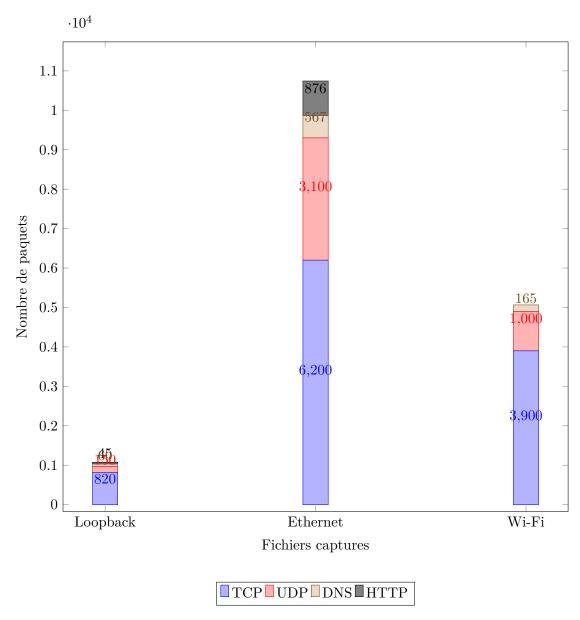


FIGURE 3.1 – Répartition des principaux protocoles par fichier.

3.2 Top Talkers —

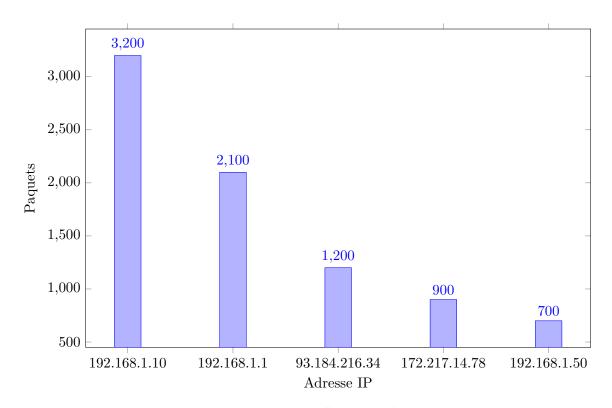


FIGURE 3.2 – Top 5 talkers — Ethernet.

Comparaison entre interfaces

4.1 Synthèse

- **Loopback** : trafic essentiellement applicatif local (diagnostic local, tests d'API). Peu de paquets mais échanges rapides.
- **Ethernet** : trafic général vers Internet et réseau local ; HTTP/HTTPS majoritaires ; présence de traffic « heavy-hitters ».
- **Wi-Fi** : mélange de trames de management + données, retransmissions plus fréquentes, chiffrement côté application (HTTPS).

4.2 Observations de sécurité

- Requêtes DNS fréquentes vérifier requêtes inhabituelles (fuzzing, exfiltration via DNS).
- Présence d'ARP peut indiquer découverte réseau normale; vérifier ARP spoofing si duplication d'adresses MAC/IP.
- Absence de traffics classiques ou forte proportion de paquets ICMP/UDP inhabituels peut indiquer scans ou attaques.

Conclusions

5.1 Conclusions

L'examen des captures montre des comportements courants : connexions HTTP/HTTPS, DNS, échanges locaux sur loopback. Le Wi-Fi montre des signes de retransmission et plus de trames de management, attendus dans un réseau sans fil.

Annexes

1. Filtres Wireshark utiles

Filtrer DNS: dns
Filtrer HTTP: http
Filtrer HTTPS (SNI / TLS): tls
Filtrer un IP source: ip.src == 192.168.1.10
Filtrer retransmission TCP: tcp.analysis.retransmission

A propos de l'auteur

Ce rapport a été préparé pour le projet d'analyse réseau.

Auteur: Yacine Sehli

Fin du rapport